shared_ptr

Covariant Return Type

The Covariant Return Type of a member function allows an overriding member function to return a narrower type. This is particularly useful when you implement the Prototype Pattern.

Read more
Views: 5488

C++ Core Guidelines: More Traps in the Concurrency

Concurrency provides many ways to shoot yourself in the foot. The rules for today help you to know these dangers and to overcome them.

Read more
Views: 15275

std::weak_ptr

std::unique_ptr models the concept of exclusive ownership, std::shared_ptr the concept of shared ownership. If I stick to this picture then std::weak_ptr models the concept of temporary ownership because it borrows the resource from a std::shared_ptr. There is one dominant reason for having a std::weak_ptr in C++: breaking of cyclic references of std::shared_ptr's.

Read more
Views: 60080

Specialities of std::shared_ptr

After I draw the big picture of a std::shared_ptr in the last post, I want to present two special aspects of this smart pointer in this post. First, I show with std::shared_from_this how to create a std::shared_ptr from an object; second, I'm interested in the question to the answer: Should a function take a std::shared_ptr by copy or by reference? The numbers are quite interesting.

Read more
Views: 25126

std::shared_ptr

std::shared_ptr's share the resource. The shared reference counter counts the number of owners. Copying a std::shared_ptr increases the reference count by one. Destroying a std::shared_ptr decreases the reference count by one. If the reference count becomes zero, the resource will automatically be released. 

Read more
Views: 43580

Memory and Performance Overhead of Smart Pointers

C++11 offers four different smart pointers. I will have a closer look in this post regarding memory and performance overhead on two of them. My first candidate, std::unique_ptr takes care of the lifetime of one resource exclusively; std::shared_ptr shares the ownership of a resource with another std::shared_ptr. I will state the result of my tests before I show you the raw numbers: There are only a few reasons in modern C++ justifying the memory management with new and delete.

 

Read more
Views: 143669

Stay Informed about my Mentoring

 

Mentoring

English Books

Course: Modern C++ Concurrency in Practice

Course: C++ Standard Library including C++14 & C++17

Course: Embedded Programming with Modern C++

Course: Generic Programming (Templates)

Course: C++ Fundamentals for Professionals

Course: The All-in-One Guide to C++20

Course: Master Software Design Patterns and Architecture in C++

Subscribe to the newsletter (+ pdf bundle)

All tags

Blog archive

Source Code

Visitors

Today 967

Yesterday 6503

Week 27224

Month 7470

All 12085679

Currently are 279 guests and no members online

Kubik-Rubik Joomla! Extensions

Latest comments