templatesArguments

Template Arguments

It is pretty interesting how the compiler deduces the types for the template arguments. To make it short, you get most of the time the type you expect. The rules do not only apply to function templates (C++98) but also to auto (C++11), to class templates (C++17), and concepts (C++20).

 

templatesArguments

C++ has supported function template argument deduction since its beginning. Here is a short recap.

Function Template Argument Deduction

Let me invoke a function template max for int and double

template <typename T>
T max(T lhs, T rhs) {
    return (lhs > rhs)? lhs : rhs;
}

int main() {
  
    max(10, 5);         // (1)
    max(10.5, 5.5);     // (2)
  
}

 

In this case, the compiler deduces the template arguments from the function arguments. C++ Insights shows that the compiler creates a fully specialized function template for max for int (1) and for double (2).

functionTempateIntDouble

 

Rainer D 6 P2 500x500Modernes C++ Mentoring

  • "Fundamentals for C++ Professionals" (open)
  • "Design Patterns and Architectural Patterns with C++" (open)
  • "C++20: Get the Details" (open)
  • "Concurrency with Modern C++" (open)
  • "Embedded Programming with Modern C++": January 2025
  • "Generic Programming (Templates) with C++": February 2025
  • "Clean Code: Best Practices for Modern C++": May 2025
  • Do you want to stay informed: Subscribe.

     

    The process of template type deduction, such as in this case, produces most of the time the expected type. It is pretty enlightening to analyze this process deeper.

    Template Type Deduction

    When deducing the template type, three entities come into play: T, ParameterType, and expression.

    template <typename T>
    void func(ParameterType param);
    
    func(expression);
    

     

    Two types are deduced:

    • T
    • ParameterType

    The ParameterType can be a

    • Value
    • Reference (&) or Pointer (*)
    • Universal Reference (&&)

    The expression can be an lvalue or an rvalue having. Additionally, the lvalue or rvalue can be a reference, or const/volatile qualified.

    The easiest way to understand the template type deduction process is to vary the ParameterType.

    ParameterType is a Value

    Taking the parameter by value is probably the most used variant.

    template <typename T>
    void func(T param);
    
    func(expr);
    

     

    • When expr is a reference, the reference is ignored => newExpr is created
    • When newExpr is const or volatile, const or volatile is ignored.

    If the parameter type is a reference or a universal reference, the constness (or volatileness) of expr is respected.

    ParameterType is a Reference (&) or Pointer (*)

    For simplicity, I use a reference. The analogous argumentation holds for a pointer. Essentially, you get precisely the result you expect.

    template <typename T>
    void func(T& param);
    // void func(T* param);
    
    func(expr);
    

     

    • When expr is a reference, the reference is ignored (but added at the end).
    • The expr matches the ParameterType and the resulting type becomes a reference. This means,
      • an expr of type int becomes an int&
      • an expr of type const int becomes a const int&
      • an expr of type const int& becomes a const int&

    ParameterType is a Universal Reference (&&)

    template <typename T>
    void func(T&& param);
    
    func(expr);
    

     

    • When expr is an lvalue, the resulting type becomes an lvalue reference.
    • When expr is an rvalue, the resulting type becomes an rvalue reference.

    Admittedly, this explanation was pretty technical. Here is an example.

    // templateTypeDeduction.cpp
    
    template <typename T>
    void funcValue(T param) { }
    
    template <typename T>
    void funcReference(T& param) { }
    
    template <typename T>
    void funcUniversalReference(T&& param) { }
    
    class RVal{};
    
    int main() {
    
        const int lVal{};
        const int& ref = lVal;
      
        funcValue(lVal);                  // (1)
        funcValue(ref);
      
        funcReference(lVal);              // (2)
      
        funcUniversalReference(lVal);     // (3)
        funcUniversalReference(RVal());
    
    }
    

     

    I define and use a function template taking its argument by value (1), by reference (2), and by universal reference (3).

    Thanks to C++ Insights, I can visualize the type deduction of the compiler.

    • (1): Both calls of funcValue cause the same instantiation of the function template. The deduced type is an int.

     

    TypeDeductionValue

    • (2): Calling the function funcReference with const int& gives the type const int&.

    TypeDeductionReference

    • (3): Using the function funcUniversalReference give an lvalue reference or an rvalue reference.

    TypeDeductionUniversalReference

    There is one interesting fact when you invoke the function funcValue with a C-array. The C-array decays.

    Decay of a C-array

    Taking a C-array by value is remarkable.

     

    // typeDeductionArray.cpp
    
    template <typename T>
    void funcValue(T param) { }
    
    int main() {
    
        int intArray[10]{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
    
        funcValue(intArray);
        
    }
    

     

    When you invoke the function template funcValue with a C-array, the C-array decays to a pointer onto its first element. Decay has many facets. It is applied when a function argument is passed by value. Decay means that an implicit conversion function-to-pointer, array-to-pointer, or lvalue-to-rvalue is applied. Additionally, the reference of a type T and its const-volatile qualifiers are removed.

    Here is the screenshot of the program from C++ Insights.

    typeDeductionArray

    This essentially means that you don’t know the size of the C-array. 

    But there is a trick. Taking the C-array by reference and pattern matching on the type and the size on the C-array gives you the size of the C-array:

    // typeDeductionArraySize.cpp
    
    #include <cstddef>
    #include <iostream>
    
    template <typename T, std::size_t N>
    std::size_t funcArraySize(T (&arr)[N]) { 
        return N;
    }
    
    int main() {
    
        std::cout << '\n';
    
        int intArray[10]{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
    
        funcArraySize(intArray);
    
        std::cout << "funcArraySize(intArray): " << funcArraySize(intArray) << '\n';
    
        std::cout << '\n';
        
    }
    

     

    The function template funcArraySize deduces the size of the C-arrays. I gave, for readability reasons, the C-array parameter the name arr: std::size_t funcArraySize(T (&arr)[N]). This is not necessary, and you can write std::size_t funcArraySize(T (&)[N]).  Here are the internals from C++ Insights.

    typeDeductionArraySize

     Finally, the output of the program:

    typeDeductionArraySizeProgram

     

    When you understand template type deduction, you essentially understand auto type deduction in C++11.

    auto Type Deduction

    auto type deduction uses the rules of template type deduction.

    To remind you, these are the essential entities of template type deduction:

    template <typename T> 
    void func(ParameterType param);
    
    auto val = 2011;
    

     

    Understanding auto means that you have to regard auto as the replacements for T and the type specifiers of auto as the replacements for the ParameterType in the function template. 

    The type specifier can be a value (1), a reference (2), or a universal reference (3).

    auto val = arg;      // (1)
    
    auto& val = arg;     // (2)
    
    auto&& val = arg;    // (3)
    

     

    Let’s try it out and change the previous program templateTypeDeduction.cpp and use auto instead of function templates.

     

    // autoTypeDeduction.cpp
    
    class RVal{};
    
    int main() {
    
        const int lVal{};
        const int& ref = lVal;
      
        auto val1 = lVal;          // (1)
        auto val2 = ref;
      
        auto& val3 = lVal;         // (2)
      
        auto&& val4 = lVal;        // (3)
        auto&& val5 = RVal();
    
    }
    

     

    When you study the resulting types in C++ Insights, you see that they are identical to the types deduced in the program templateTypeDeduction.cpp.

    autoTypeDeduction

    Of course, auto decays when it takes a C-array by value.

    The New pdf-Bundle is Ready: C++20 Coroutines

    I have prepared the pdf-bundle. To get it is pretty simple. If you subscribe to my German or English newsletter, you will get the link to the pdf bundle.
     
    Here is more information about the pdf-Bundle:  C++ Coroutines.
    pollResult

    What’s next?

    C++17 makes type deduction more powerful. First, automatic type deduction is possible for non-type template parameters, and second, class templates can also deduce their arguments. In particular, class template argument deduction makes the life of a programmer much more straightforward.

     

     

     
     

     

     

    Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Stephen Kelley, Kyle Dean, Tusar Palauri, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, Rob North, Bhavith C Achar, Marco Parri Empoli, Philipp Lenk, Charles-Jianye Chen, Keith Jeffery, Matt Godbolt, and Honey Sukesan.

    Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, Slavko Radman, and David Poole.

    My special thanks to Embarcadero
    My special thanks to PVS-Studio
    My special thanks to Tipi.build 
    My special thanks to Take Up Code
    My special thanks to SHAVEDYAKS

    Modernes C++ GmbH

    Modernes C++ Mentoring (English)

    Do you want to stay informed about my mentoring programs? Subscribe Here

    Rainer Grimm
    Yalovastraße 20
    72108 Rottenburg

    Mobil: +49 176 5506 5086
    Mail: schulung@ModernesCpp.de
    Mentoring: www.ModernesCpp.org

    Modernes C++ Mentoring,

     

     

    0 replies

    Leave a Reply

    Want to join the discussion?
    Feel free to contribute!

    Leave a Reply

    Your email address will not be published. Required fields are marked *