The Type-Traits Library: Type Comparisons


In my last post "The Type-Traits Library: Type Checks" I introduced type checks at compile time with the type-traits library. Today, I write about type comparisons at compile time.



The type-traits library empowers you to compare types at compile time. At compile time means that there are no costs involved at run time.

Comparing types

The type-traits library supports in C++11 three kinds of comparisons:

  • is_base_of<Base, Derived>
  • is_convertible<From, To>
  • is_same<T, U>

With C++20, we additionally got

  • is_pointer_interconvertible_with_class<From, To>
  • is_pointer_interconvertible_base_of<Base, Derived>


For simplicity reasons, I write only about the C++11 metafunctions.

Thanks to its member value each class template returns true or false and is, therefore, the optimal fit for static_assert.


// compare.cpp

#include <cstdint>
#include <iostream>
#include <type_traits>

class Base{};
class Derived: public Base{};

int main(){
  std::cout << std::boolalpha << '\n';
  std::cout << "std::is_base_of<Base,Derived>::value: " << std::is_base_of<Base,Derived>::value << '\n';
  std::cout << "std::is_base_of<Derived,Base>::value: " << std::is_base_of<Derived,Base>::value << '\n';
  std::cout << "std::is_base_of<Derived,Derived>::value: " << std::is_base_of<Derived,Derived>::value << '\n';
  // static_assert(std::is_base_of<Derived,Base>::value,"Derived is not base of Base");                  // (1) 
  std::cout << '\n';
  std::cout << "std::is_convertible<Base*,Derived*>::value: " << std::is_convertible<Base*,Derived*>::value << '\n';
  std::cout << "std::is_convertible<Derived*,Base*>::value: " << std::is_convertible<Derived*,Base*>::value << '\n';
  std::cout << "std::is_convertible<Derived*,Derived*>::value: " << std::is_convertible<Derived*,Derived*>::value << '\n';
  // static_assert(std::is_convertible<Base*,Derived*>::value,"Base* can not be converted to Derived*");  // (2)
  std::cout << '\n';
  std::cout << "std::is_same<int, int32_t>::value: " << std::is_same<int, int32_t>::value << '\n';
  std::cout << "std::is_same<int, int64_t>::value: " << std::is_same<int, int64_t>::value << '\n';
  std::cout << "std::is_same<long int, int64_t>::value: " << std::is_same<long int, int64_t>::value << '\n';
  // static_assert(std::is_same<int, int64_t>::value,"int is not the same type as int64_t");              // (3)
  std::cout << '\n';


The output of the program should not surprise you.



If I use the static_assert in lines (1), (2), and (3), the assertion fires at compile time:


The website contains possible implementations of all the metafunctions std::is_base_of,std::is_convertible,, and std::is_same. It's quite interesting and challenging to study them. 


Rainer D 6 P2 540x540Modernes C++ Mentoring

Stay informed about my mentoring programs.



Subscribe via E-Mail.

Possible Implementations

First of all, here are possible implementations of the three metafunctions. Let me start with the simplest one, based on std::is_same.


I use in the following example the namespace rgr to distinguish my implementation from the C++ standard implementation.


// isSame.cpp

#include <iostream>
#include <type_traits>

namespace rgr {

  template<class T, T v>
  struct integral_constant {
      static constexpr T value = v;
      typedef T value_type;
      typedef integral_constant type;
      constexpr operator value_type() const noexcept { return value; }
      constexpr value_type operator()() const noexcept { return value; } //since c++14

  typedef integral_constant<bool, true> true_type;                      // (2)              
  typedef integral_constant<bool, false> false_type;
  template<class T, class U>
  struct is_same : false_type {};                                       // (3)
  template<class T>
  struct is_same<T, T> : true_type {};


int main() {

    std::cout << '\n';

    std::cout << std::boolalpha;

    std::cout << "rgr::is_same<int, const int>::value: " 
              << rgr::is_same<int, const int>::value << '\n';          // (1)
    std::cout << "rgr::is_same<int, volatile int>::value: " 
              << rgr::is_same<int, volatile int>::value << '\n';
    std::cout << "rgr::is_same<int, int>::value: "  
              << rgr::is_same<int, int>::value << '\n';

    std::cout << '\n';

    std::cout << "std::is_same<int, const int>::value: " 
              << std::is_same<int, const int>::value << '\n';
    std::cout << "std::is_same<int, volatile int>::value: " 
              << std::is_same<int, volatile int>::value << '\n';
    std::cout << "std::is_same<int, int>::value: "  
              << std::is_same<int, int>::value << '\n';

    std::cout << '\n';



 A short reminder: The invocation of the function template rgr::is_same<int, const int> (line 1) causes the invocation of the expression rgr::false_type::value (line 2), because std::is_same<> is derived from false_type (line 3). rgr::false_type::value is an alias for rgr::integral_constant<bool, false>::value (line 2). I use in the example the static constexpr value of the class integral_constant. integral_constant is the base class of the type-traits functions.

Two facts are interesting when you study the following output. My implementations rgr::is_same behaves such as std::is_same, and const and volatile are part of the type.


 It's quite straightforward to implement the metafunction isSameIgnoringConstVolatile based on the metafunction is_same.


// isSameIgnoringConstVolatile.cpp

#include <iostream>
#include <type_traits>

namespace rgr {

  template<class T, T v>
  struct integral_constant {
      static constexpr T value = v;
      typedef T value_type;
      typedef integral_constant type;
      constexpr operator value_type() const noexcept { return value; }
      constexpr value_type operator()() const noexcept { return value; } //since c++14

  typedef integral_constant<bool, true> true_type;                       
  typedef integral_constant<bool, false> false_type;

  template<class T, class U>
  struct is_same : false_type {};
  template<class T>
  struct is_same<T, T> : true_type {};
  template<typename T, typename U>                                    // (1)
  struct isSameIgnoringConstVolatile: rgr::integral_constant<
         rgr::is_same<typename std::remove_cv<T>::type, 
                      typename std::remove_cv<U>::type>::value  
     > {};


int main() {

    std::cout << '\n';

    std::cout << std::boolalpha;

    std::cout << "rgr::isSameIgnoringConstVolatile<int, const int>::value: " 
              << rgr::isSameIgnoringConstVolatile<int, const int>::value << '\n';
    std::cout << "rgr::is_same<int, volatile int>::value: " 
              << rgr::isSameIgnoringConstVolatile<int, volatile int>::value << '\n';
    std::cout << "rgr::isSameIgnoringConstVolatile<int, int>::value: "  
              << rgr::isSameIgnoringConstVolatile<int, int>::value << '\n';

    std::cout << '\n';



The meta function isSameIgnoringConstVolatile derives from rgr::integral_constant and uses the function std::remove_cv to remove const or volatile from its types. As you may assume, std::remove_cv is a function from the type-traits library and allows you the modify types at compile time. I will write more about type modification in my next post.

Finally, here is the output of the program:


Let's have a closer look at the two metafunctions std::is_base_of, and std::is_convertible. Here are the possible implementations from


namespace details {
    template <typename B>
    std::true_type test_pre_ptr_convertible(const volatile B*);
    template <typename>
    std::false_type test_pre_ptr_convertible(const volatile void*);
    template <typename, typename>
    auto test_pre_is_base_of(...) -> std::true_type;
    template <typename B, typename D>
    auto test_pre_is_base_of(int) ->
template <typename Base, typename Derived>
struct is_base_of :
        std::is_class<Base>::value && std::is_class<Derived>::value &&
        decltype(details::test_pre_is_base_of<Base, Derived>(0))::value
    > { };


namespace detail {
template<class T>
auto test_returnable(int) -> decltype(
    void(static_cast<T(*)()>(nullptr)), std::true_type{}
auto test_returnable(...) -> std::false_type;
template<class From, class To>
auto test_implicitly_convertible(int) -> decltype(
    void(std::declval<void(&)(To)>()(std::declval<From>())), std::true_type{}
template<class, class>
auto test_implicitly_convertible(...) -> std::false_type;
} // namespace detail
template<class From, class To>
struct is_convertible : std::integral_constant<bool,
    (decltype(detail::test_returnable<To>(0))::value &&
     decltype(detail::test_implicitly_convertible<From, To>(0))::value) ||
    (std::is_void<From>::value && std::is_void<To>::value)
> {};


Now, you know why I explained std::is_same. Here is my challenge.

My Challenge

Explain the previous implementation of the type-traits functions std::is_base_of and std::is_convertible. Send your explanation to This email address is being protected from spambots. You need JavaScript enabled to view it. until Thursday (December 2th). The best answer for each function gets a coupon for my LeanPub bundle Modern C++ Collection.

bundelI publish the best answer to each function in my next post and name your first name. If I should name your full name, please write it.

What's next?

Thanks to the type-traits library, you can modify types at compile time. I write about it in my next post.


Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Matthieu Bolt, Stephen Kelley, Kyle Dean, Tusar Palauri, Dmitry Farberov, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, Dominik Vošček, and Rob North.


Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, and Slavko Radman.



My special thanks to Embarcadero CBUIDER STUDIO FINAL ICONS 1024 Small


My special thanks to PVS-Studio PVC Logo


My special thanks to logo


I'm happy to give online seminars or face-to-face seminars worldwide. Please call me if you have any questions.

Bookable (Online)


Standard Seminars (English/German)

Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.

  • C++ - The Core Language
  • C++ - The Standard Library
  • C++ - Compact
  • C++11 and C++14
  • Concurrency with Modern C++
  • Design Pattern and Architectural Pattern with C++
  • Embedded Programming with Modern C++
  • Generic Programming (Templates) with C++


  • Clean Code with Modern C++
  • C++20

Contact Me

Modernes C++,



Stay Informed about my Mentoring


English Books

Course: Modern C++ Concurrency in Practice

Course: C++ Standard Library including C++14 & C++17

Course: Embedded Programming with Modern C++

Course: Generic Programming (Templates)

Course: C++ Fundamentals for Professionals

Interactive Course: The All-in-One Guide to C++20

Subscribe to the newsletter (+ pdf bundle)

All tags

Blog archive

Source Code


Today 832

Yesterday 4552

Week 41946

Month 186117

All 11667271

Currently are 128 guests and no members online

Kubik-Rubik Joomla! Extensions

Latest comments