acquire-release semantic

Blocking and Non-Blocking Algorithms

Blocking, non-blocking, lock-free and wait-free. Each of these terms describes a key characteristic of an algorithm when executed in a concurrent environment. So, reasoning about the runtime behaviour of your program often means to put your algorithm in the right bucket. Therefore, this post is about buckets.

Read more
Comments 4Views: 16636

Thread-Safe Initialization of a Singleton

There are a lot of issues with the singleton pattern. I'm totally aware of that. But the singleton pattern is an ideal use case for a variable, which has only to be initialized in a thread safe way. From that point on you can use it without synchronization. So in this post I discuss different ways to initialize a singleton in a multithreading environment. You get the performance numbers and can reason about your uses cases for the thread safe initialization of a variable.

Read more
Comments 7Views: 74073

Ongoing Optimization: A Data Race with CppMem

But we can do better and further improve the acquire-release semantic of the last post. Why should x be an atomic? There is no reason. That was my first, but incorrect assumption. See why?

Read more
Comments 1Views: 3537

Ongoing Optimization: Acquire-Release Semantic with CppMem

With the acquire-releae semantic, we break the sequential consistency. In the acquire-release semantic the synchronization takes place between atomic operations on the same atomic and not between threads.

Read more
Comments 1Views: 3597

Acquire-Release Fences

Acquire and release fences guarantees similar synchronisation and ordering constraints as atomics with acquire-release semantic. Similar, because the differences are in the details.

Read more
Comments 11Views: 10099

Fences are Memory Barriers

The key idea of a std::atomic_thread_fence is, to establish synchronisation and ordering constraints between threads without an atomic operation.

Read more
Comments 8Views: 19747

Acquire-Release Semantic - The typical Misunderstanding

A release operation synchronizes-with an acquire operation on the same atomic variable. So we can easily synchronise threads, if ... . Today's post is about the if.

Read more
Comments 2Views: 7692

memory_order_consume

std::memory_order_consume is the most legendary of the six memory models. That's for two reasons. At one hand, std::memory_order_consume is extremely hard to get. At the other hand - that may change in the future - no compiler supports it.

Read more
Comments 3Views: 8480

Acquire-Release Semantic

With the acquire-release semantic the memory model gets very thrilling. Because now, we have not to reason about the synchronisation of threads, now we have to reason about the synchronisation of the same atomic in different threads.

Read more
Comments 3Views: 8625

Subscribe to the newsletter (+ pdf bundle)

Blog archive

Source Code

Visitors

Today 1633

All 1405076

Currently are 187 guests and no members online

Kubik-Rubik Joomla! Extensions

Latest comments