Removing elements from a container or asking if an associative container has a specific key, is too complicated. I should say was because with C++20 the story changes.

Let me start simple. You want to erase an element from a container.
The erase-remove Idiom
Okay. Removing an element from a container is quite easy. In case of a std::vecto
r you can use the function std::remove.
// removeElements.cpp
#include <algorithm>
#include <iostream>
#include <vector>
int main() {
std::cout << std::endl;
std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };
for (auto ele: myVec) std::cout << ele << " ";
std::cout << "\n\n";
std::remove_if(myVec.begin(), myVec.end(), [](int ele){ return ele < 0; }); // (1)
for (auto ele: myVec) std::cout << ele << " ";
std::cout << "\n\n";
}
The program removeElemtens.cpp
removes all elements the std::vector
that is smaller than zero. Easy, or? Now, you fall into the trap that is well-known to each professional C++ programmer.

std::remove
or std::remove_if
inline (1) does not remove anything. The std::vector
still has the same number of arguments. Both algorithms return the new logical end of the modified container.
To modify a container, you have to apply the new logical end to the container.
// eraseRemoveElements.cpp
#include <algorithm>
#include <iostream>
#include <vector>
int main() {
std::cout << std::endl;
std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };
for (auto ele: myVec) std::cout << ele << " ";
std::cout << "\n\n";
auto newEnd = std::remove_if(myVec.begin(), myVec.end(), // (1)
[](int ele){ return ele < 0; });
myVec.erase(newEnd, myVec.end()); // (2)
// myVec.erase(std::remove_if(myVec.begin(), myVec.end(), // (3)
[](int ele){ return ele < 0; }), myVec.end());
for (auto ele: myVec) std::cout << ele << " ";
std::cout << "\n\n";
}
Line (1) returns the new logical end newEnd
of the container myVec
. This new logical end is applied in the line (2) to remove all elements from myVec
starting at newEnd
. When you apply the functions remove and erase in one expression such as in line (3), you exactly see, why this construct is called erase-remove-idiom.

Thanks to the new functions erase
and erase_if
in C++20, erasing elements from containers is way more convenient.
erase
and erase_if
in C++20
With erase
and erase_if
, you can directly operate on the container. In contrast, the previous presented erase-remove idiom is quite verbose (line 3 in eraseRemoveElements.cpp
): erase
requires two iterators which I provided by the algorithm std::remove_if
.
Let's see what the new functions erase
and erase_if
mean in practice. The following program erases elements for a few containers.
// eraseCpp20.cpp
#include <iostream>
#include <numeric>
#include <deque>
#include <list>
#include <string>
#include <vector>
template <typename Cont> // (7)
void eraseVal(Cont& cont, int val) {
std::erase(cont, val);
}
template <typename Cont, typename Pred> // (8)
void erasePredicate(Cont& cont, Pred pred) {
std::erase_if(cont, pred);
}
template <typename Cont>
void printContainer(Cont& cont) {
for (auto c: cont) std::cout << c << " ";
std::cout << std::endl;
}
template <typename Cont> // (6)
void doAll(Cont& cont) {
printContainer(cont);
eraseVal(cont, 5);
printContainer(cont);
erasePredicate(cont, [](auto i) { return i >= 3; } );
printContainer(cont);
}
int main() {
std::cout << std::endl;
std::string str{"A Sentence with an E."};
std::cout << "str: " << str << std::endl;
std::erase(str, 'e'); // (1)
std::cout << "str: " << str << std::endl;
std::erase_if( str, [](char c){ return std::isupper(c); }); // (2)
std::cout << "str: " << str << std::endl;
std::cout << "\nstd::vector " << std::endl;
std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9}; // (3)
doAll(vec);
std::cout << "\nstd::deque " << std::endl;
std::deque deq{1, 2, 3, 4, 5, 6, 7, 8, 9}; // (4)
doAll(deq);
std::cout << "\nstd::list" << std::endl;
std::list lst{1, 2, 3, 4, 5, 6, 7, 8, 9}; // (5)
doAll(lst);
}
Line (1) erases all character e
from the given string str.
Line (2) applies the lambda expression to the same string and erases all upper case letters.
In the remaining program, elements of the sequence containers std::vecto
r (line 3), std::deque
(line 4), and std::list
(line 5) are erased. On each container, the function template doAll
(line 6) is applied. doAll
erases the element 5 and all elements greater than 3. The function template erase
(line 7) uses the new function erase
and the function template erasePredicate
(line 8) uses the new function erase_if
.
Thanks to the Microsoft Compiler, here it the output of the program.

The new functions erase
and erase_if
can be applied to all containers of the Standard Template Library. This does not hold for the next convenience function contains
.
Checking the Existence of an Element in an Associative Container
Thanks to the functions contains
, you can easily check if an element exists in an associative container.
Stopp, you may say, we can already do this with find or count.
No, both functions are not beginners friendly and have their downsides.
// checkExistens.cpp
#include <set>
#include <iostream>
int main() {
std::cout << std::endl;
std::set mySet{3, 2, 1};
if (mySet.find(2) != mySet.end()) { // (1)
std::cout << "2 inside" << std::endl;
}
std::multiset myMultiSet{3, 2, 1, 2};
if (myMultiSet.count(2)) { // (2)
std::cout << "2 inside" << std::endl;
}
std::cout << std::endl;
}
The functions produce the expected result.

Here are the issues with both calls. The find
call inline (1) is too verbose. The same argumentation holds for the count
call in line (2). The count
call has also a performance issue. When you want to know if an element is in a container, you should stop when you found it and not count until the end. In the concrete case myMultiSet.count(2)
returned 2.
On the contrary, the contains member function in C++20 is quite convenient to use.
// containsElement.cpp
#include <iostream>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
template <typename AssozCont>
bool containsElement5(const AssozCont& assozCont) { // (1)
return assozCont.contains(5);
}
int main() {
std::cout << std::boolalpha;
std::cout << std::endl;
std::set<int> mySet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
std::cout << "containsElement5(mySet): " << containsElement5(mySet);
std::cout << std::endl;
std::unordered_set<int> myUnordSet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
std::cout << "containsElement5(myUnordSet): " << containsElement5(myUnordSet);
std::cout << std::endl;
std::map<int, std::string> myMap{ {1, "red"}, {2, "blue"}, {3, "green"} };
std::cout << "containsElement5(myMap): " << containsElement5(myMap);
std::cout << std::endl;
std::unordered_map<int, std::string> myUnordMap{ {1, "red"}, {2, "blue"}, {3, "green"} };
std::cout << "containsElement5(myUnordMap): " << containsElement5(myUnordMap);
std::cout << std::endl;
}
There is not much to add to this example. The function template containsElement5
returns true
if the associative container contains the key 5. In my example, I only used the associative containers std::set
, std::unordered_set
, std::map
, and std::unordered_set
which can not have a key more than once.

What's next?
The convenience functions go on in my next post. With C++20, you can calculate the midpoint of two values, check if a std::string
start or ends with a substring, and create callables with std::bind_front
.
Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Matthieu Bolt, Stephen Kelley, Kyle Dean, Tusar Palauri, Dmitry Farberov, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, and Dominik Vošček.
Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, and Slavko Radman.
My special thanks to Embarcadero 
My special thanks to PVS-Studio 
My special thanks to Tipi.build 
Seminars
I'm happy to give online seminars or face-to-face seminars worldwide. Please call me if you have any questions.
Bookable (Online)
German
Standard Seminars (English/German)
Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.
- C++ - The Core Language
- C++ - The Standard Library
- C++ - Compact
- C++11 and C++14
- Concurrency with Modern C++
- Design Pattern and Architectural Pattern with C++
- Embedded Programming with Modern C++
- Generic Programming (Templates) with C++
New
- Clean Code with Modern C++
- C++20
Contact Me
- Phone: +49 7472 917441
- Mobil:: +49 176 5506 5086
- Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
- German Seminar Page: www.ModernesCpp.de
- Mentoring Page: www.ModernesCpp.org
Modernes C++,

Comments
looks like the container is not in a well defined state.
remove_if does not realy remove the matched elements but moves them to the end of the container and returns a new end iterator which is pointing to the first removed element. The container is reordered but in a well defined state.
This is can be more efficient than erasing because no heap operations are involved.
RSS feed for comments to this post