templatesNew

Function Templates – More Details about Explicit Template Arguments and Concepts

In the last post, “Function Templates“, I wrote about the overloading of function templates and automatically deducing the return type of a function template. Today, I dive deeper and explicitly specify a function template’s arguments and bring concepts into the play.

 templatesNew

Before I start this post, I have to make two general remarks. Today, I write about a don’t and a do.

  • Don’t: In general, you should not explicitly specify the template arguments for function templates.
  • Do: You should generally use restricted template parameters (concepts).

Let me start with the don’t.

Explicitly Specifying the Template Arguments

You can explicitly specify the template arguments. This is necessary if the compiler cannot deduce the type parameters of the function templates or if you use class templates. With C++17, the compiler can automatically deduce the type of the template arguments from the constructor arguments:

std::vector<int> myVec{1, 2, 3, 4, 5};  // (1)
std::vector myVec{1, 2, 3, 4, 5};       // (2)

Instead of line (1), you can use line (2) in C++17. I will write more about this feature in an upcoming post.

Once more. In general, you should not specify the template arguments. But I intentionally did it.

 

Rainer D 6 P2 500x500Modernes C++ Mentoring

  • "Fundamentals for C++ Professionals" (open)
  • "Design Patterns and Architectural Patterns with C++" (open)
  • "C++20: Get the Details" (open)
  • "Concurrency with Modern C++" (open)
  • "Embedded Programming with Modern C++": January 2025
  • "Generic Programming (Templates) with C++": February 2025
  • "Clean Code: Best Practices for Modern C++": May 2025
  • Do you want to stay informed: Subscribe.

     

    // maxExplicitTypeParameter.cpp
    
    template <typename T>
    T max(const T& lhs,const T& rhs) {
        return (lhs > rhs)? lhs : rhs;
    }
    
    int main() {
      
      auto res1 = max<float>(5.5, 6.0);
      auto res2 = max<bool>(5.5, 6.0);
      auto res3 = max(5.5, 6.0);
      
    }
    

     What is happening in lines (1) – (3)? C++ Insights helps me to analyze the code. These are the crucial output lines:

    maxExplicitInstantiationCppInsightsNew

     

    • The call max<float>(5.5, 6.0) in line (1) causes the instantiation of the function template max for double (line 10). Consequently, both doubles are converted to const float (line 40). 
    • The call max<bool>(5.5,  6.0) in line (2) puts a lot of work on the compiler’s shoulder. 
      1. The invocation causes the compiler to convert the doubles to implicitly bool.
      2. To compare both bools inside the function body (line 23), they must be promoted to int (line 23).
      3. Finally, the return type res2 is bool. Consequently, the int must be converted to bool.
    • The call max(5.5, 6.0)  in line (3) does precisely the job you want. No conversion or promotion is necessary.

    Honestly, I would consider the max<bool>(5.5, 6.0) as an error and not intentional. But this happens when you want to be brighter than the compiler.

    There is a related syntax to the explicit specification of template arguments that you may sometimes see but puzzles you: max<>(5.5, 6.0); When do I ask in my seminars: What could that mean? Based on the previous theory, half of my participants would guess it right

    Imagine you have a function and a function template max:

    // maxCompilerDeduction.cpp
    
    double max(const double& lhs, const double& rhs) {
      return (lhs > rhs)? lhs : rhs;
    }
    
    template <typename T>
    T max(const T& lhs,const T& rhs) {
        return (lhs > rhs)? lhs : rhs;
    }
    
    int main() {
      
      auto res1 = max(5.5, 6.0);    // (1)
      auto res2 = max<>(5.5, 6.0);  // (2)
      
    }
    

    As we learned in the previous post, “Function Templates“, the compiler prefers the function when the function and the function templates are ideal fits. Okay, this answers line (1). Line (2) expresses that the compiler should only consider the function template max and ignore the function max. Additionally, the compiler automatically deduces the template parameters for the function arguments. Consequently, C++ Insights shows that the compiler instantiated max for double.

     maxCompilerDeductionCppInsights

    So far, I have only considered function overloading with functions and function templates having unrestricted type parameters. Okay, I can do better and should. Now, I bring restricted type parameters (concepts) into the play. This means here is my do for this post: Use restricted type parameters if possible.

    Overloading with Concepts

    C++20 has the concept std::totally_ordered. A type T supports a total order if it supports partial order and any elements of T can be compared. Let me be more formal:

    A type T supports partial order if the following relations for all elements a, b, and c of the type T hold:

    1. a <= a (reflexive)
    2. If a <= b and b <= c then a <= c (transitive)
    3. If a <=b and b <= a then a == b (antisymmetric)

    A type T supports total order if it supports partial order and all elements of T can be compared.

    1. a <= b or b <= b (comparable)

    The following program uses the concept std::totally_ordered:

    // maxUnconstrainedConstrained.cpp
    
    #include <iostream>
    #include <concepts>
    
    class Account {
     public:
        explicit Account(double b): balance(b) {}
        double getBalance() const { 
            return balance;
        }
     private:
        double balance;
    };
      
    Account max(const Account& lhs, const Account& rhs) {  // (1)
        std::cout << "max function\n";
        return (lhs.getBalance() > rhs.getBalance())? lhs : rhs;
    }
    
    template <std::totally_ordered T>                       // (2)
    T max(const T& lhs,const T& rhs) {                     
        std::cout << "max restricted function template\n";
        return (lhs > rhs)? lhs : rhs;
    }
    
    template <typename T>                                   // (3)
    T max(const T& lhs,const T& rhs) {                   
        std::cout << "max unrestriced function template\n";
        return (lhs > rhs)? lhs : rhs;
    }
    
    
    int main() {
      
        Account account1(50.5);
        Account account2(60.5);
        Account maxAccount = max(account1, account2);       // (4)
      
        int i1{50};
        int i2(60);
        int maxI = max(i2, i2);                             // (5)
      
    }
    

    The program defines a function max taking two Accounts (line 1) and two function templates. The first function template max in line (2) requires that the values support a total ordering. The second function template max has no type constraints on its type parameters. As you might expect, the compiler chooses the best-fitting overload. A function template a fits better than another function template b if a is more specialized than b. This means it chooses the function for Accounts (line 4) and the function template max with restricted type parameters for int (line 5).

    The comments in the various max function make the decisions of the compiler transparent.

    maxCompilerExplorer

    You can study the program on Compiler Explorer.

    What’s next?

    After the basics to function templates, I will present the basics of class templates in my next post. Additionally, I will write in this context about generic member functions, inheritance with templates, and alias templates.

     

     

     

     
     

     

     

    Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Stephen Kelley, Kyle Dean, Tusar Palauri, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, Rob North, Bhavith C Achar, Marco Parri Empoli, Philipp Lenk, Charles-Jianye Chen, Keith Jeffery, Matt Godbolt, and Honey Sukesan.

    Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, Slavko Radman, and David Poole.

    My special thanks to Embarcadero
    My special thanks to PVS-Studio
    My special thanks to Tipi.build 
    My special thanks to Take Up Code
    My special thanks to SHAVEDYAKS

    Modernes C++ GmbH

    Modernes C++ Mentoring (English)

    Do you want to stay informed about my mentoring programs? Subscribe Here

    Rainer Grimm
    Yalovastraße 20
    72108 Rottenburg

    Mobil: +49 176 5506 5086
    Mail: schulung@ModernesCpp.de
    Mentoring: www.ModernesCpp.org

    Modernes C++ Mentoring,

     

     

    0 replies

    Leave a Reply

    Want to join the discussion?
    Feel free to contribute!

    Leave a Reply

    Your email address will not be published. Required fields are marked *