This post concludes my presentation of library features in C++20. Today I am writing about the class std::source_location
and a few functions for bit manipulation.

std::source_location
std::source_location
represents information about the source code. This information includes file names, line numbers, and function names. The information is precious when you need information about the call site for debugging, logging, or testing purposes. The class std::source_location
is the better alternative for the predefined C++11 macros __FILE__
and __LINE__
and should, therefore, be used.
The following table shows the interface of std::source_location
.

The call std::source_location::current()
creates a new source location object src. sr
c represents the information of the call site. Now, no C++ compiler supports std::source_location
. Consequently, the following program sourceLocation.cpp
is from cppreference.com/source_location.
// sourceLocation.cpp
// from cppreference.com
#include <iostream>
#include <string_view>
#include <source_location>
void log(std::string_view message,
const std::source_location& location = std::source_location::current())
{
std::cout << "info:"
<< location.file_name() << ':'
<< location.line() << ' '
<< message << '\n';
}
int main()
{
log("Hello world!"); // info:main.cpp:19 Hello world!
}
The output of the program is part of its source code.
C++20 makes it quite comfortable to access or manipulate bits or bit sequences.
Modernes C++ Mentoring
Be part of my mentoring programs:
Do you want to stay informed about my mentoring programs: Subscribe via E-Mail.
Bit Manipulation
Thanks to the new type std::endian, you get the endianness of a scalar type.
Endianness
- Endianness can be big-endian or little-endian. Big-endian means the most significant byte comes first; little-endian means that the least significant byte comes first.
- A scalar type is either an arithmetic type, an
enum
, a pointer, a member pointer, or a std::nullptr_t
.
The class endian
provides the endianness of all scalar types:
enum class endian
{
little = /*implementation-defined*/,
big = /*implementation-defined*/,
native = /*implementation-defined*/
};
- If all scalar types are little-endian,
std::endian::native
is equal to std::endian::little
.
- If all scalar types are big-endian,
std::endian::native
is equal to std::endian::big
.
Even corner cases are supported:
- If all scalar types have
sizeof
1 and therefore endianness does not matter; the values of the enumerators std::endian::little
, std::endian::big
, and std::endian::native
are identical.
- If the platform uses mixed endianness,
std::endian::native
is neither equal to std::endian::big
nor std::endian::little
.
When I perform the following program getEndianness.cpp
on an x86 architecture, I get the answer little-endian.
// getEndianness.cpp
#include <bit>
#include <iostream>
int main() {
if constexpr (std::endian::native == std::endian::big) {
std::cout << "big-endian" << '\n';
}
else if constexpr (std::endian::native == std::endian::little) {
std::cout << "little-endian" << '\n'; // little-endian
}
}
constexpr if
enables it to compile source code conditionally. This means that the compilation depends on the endianness of your architecture. If you want to know more about endianness, read the same-named
Wikipedia page.
Accessing or Manipulating Bits or Bit Sequences
The following table gives you the first overview of all functions.

The functions except std::bit_cast
require an unsigned integer type (unsigned char, unsigned short, unsigned int, unsigned long,
or unsigned long long
).
The program bit.cpp
shows the usage of the functions.
// bit.cpp
#include <bit>
#include <bitset>
#include <iostream>
int main() {
std::uint8_t num= 0b00110010;
std::cout << std::boolalpha;
std::cout << "std::has_single_bit(0b00110010): " << std::has_single_bit(num)
<< '\n';
std::cout << "std::bit_ceil(0b00110010): " << std::bitset<8>(std::bit_ceil(num))
<< '\n';
std::cout << "std::bit_floor(0b00110010): "
<< std::bitset<8>(std::bit_floor(num)) << '\n';
std::cout << "std::bit_width(5u): " << std::bit_width(5u) << '\n';
std::cout << "std::rotl(0b00110010, 2): " << std::bitset<8>(std::rotl(num, 2))
<< '\n';
std::cout << "std::rotr(0b00110010, 2): " << std::bitset<8>(std::rotr(num, 2))
<< '\n';
std::cout << "std::countl_zero(0b00110010): " << std::countl_zero(num) << '\n';
std::cout << "std::countl_one(0b00110010): " << std::countl_one(num) << '\n';
std::cout << "std::countr_zero(0b00110010): " << std::countr_zero(num) << '\n';
std::cout << "std::countr_one(0b00110010): " << std::countr_one(num) << '\n';
std::cout << "std::popcount(0b00110010): " << std::popcount(num) << '\n';
}
Here is the output of the program:

The next program shows the application and the output of the functions std::bit_floor
, std::bit_ceil
, std::bit_width
, and std::bit_popcount
for the numbers 2 to 7.
// bitFloorCeil.cpp
#include <bit>
#include <bitset>
#include <iostream>
int main() {
std::cout << std::endl;
std::cout << std::boolalpha;
for (auto i = 2u; i < 8u; ++i) {
std::cout << "bit_floor(" << std::bitset<8>(i) << ") = "
<< std::bit_floor(i) << '\n';
std::cout << "bit_ceil(" << std::bitset<8>(i) << ") = "
<< std::bit_ceil(i) << '\n';
std::cout << "bit_width(" << std::bitset<8>(i) << ") = "
<< std::bit_width(i) << '\n';
std::cout << "bit_popcount(" << std::bitset<8>(i) << ") = "
<< std::popcount(i) << '\n';
std::cout << std::endl;
}
std::cout << std::endl;
}

What's next?
Additionally to coroutines, C++20 has much to offer for concurrency. First, C++20 has new atomics. The new atomics exist for floating-point values and smart pointers. C++20 also enables waiting on atomics. To coordinate threads, semaphores, latches, and barriers come into play. Also, the std::thread
was improved with std::jthread
. The execution of a std::jthread
can be interrupted and joins automatically in its destructor.
Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Matthieu Bolt, Stephen Kelley, Kyle Dean, Tusar Palauri, Dmitry Farberov, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, and Rob North.
Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, and Slavko Radman.
My special thanks to Embarcadero 
My special thanks to PVS-Studio 
My special thanks to Tipi.build 
My special thanks to Take Up Code 
Seminars
I'm happy to give online seminars or face-to-face seminars worldwide. Please call me if you have any questions.
Bookable (Online)
German
Standard Seminars (English/German)
Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.
- C++ - The Core Language
- C++ - The Standard Library
- C++ - Compact
- C++11 and C++14
- Concurrency with Modern C++
- Design Pattern and Architectural Pattern with C++
- Embedded Programming with Modern C++
- Generic Programming (Templates) with C++
New
- Clean Code with Modern C++
- C++20
Contact Me
- Phone: +49 7472 917441
- Mobil:: +49 176 5506 5086
- Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
- German Seminar Page: www.ModernesCpp.de
- Mentoring Page: www.ModernesCpp.org
Modernes C++,

Comments
Thanks, I fix it.
Thanks, I fix it.
RSS feed for comments to this post